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Introduction and Objectives
• This two-part session will provide an introduction to several fundamental 

aspects of vehicle-track interaction at the wheel/rail interface, including:

– The Wheel / Rail Interface and Key Terminology

– The Contact Patch and Contact Pressures

– Creepage, Friction and Traction Forces

– Wheelset Geometry and Effective Conicity

– Vehicle Steering and Curving Forces

– Rail and Wheel Wear

– Shakedown and Rolling Contact Fatigue (RCF)

– Curving Noise

– Corrugations

• The objective is to develop a framework to understand, articulate, 
quantify and identify key phenomena that affect the practical operation, 
economics and safety of heavy haul and passenger rail systems.
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Three questions that we will aim 

to answer….
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Question #1:  How can we estimate the lateral forces 

(and L/V ratios) that a vehicle is exerting on the track?
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Question #2:  How can we determine if there is a risk 

of rolling contact fatigue (RCF) developing under a 

given set of vehicle/track conditions?
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Question #3:  How is the noise captured in these two 

sound files generated at the wheel/rail interface?

• File #1:

• File #2:
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Overview: Part I

• The Wheel / Rail Interface and Key Terminology

• The Contact Patch and Contact Pressures

• Creepage, Friction and Traction Forces

• Wheelset Geometry and Effective Conicity

• Vehicle Steering and Curving Forces
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Back to basics…

• Tangent

• Curve

• Spiral

• High Rail

• Low Rail

• Superelevation

(aka Cant)

• Rail Cant
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The Wheel / Rail Interface and Key Terminology

Field Side Gage Side

Back of 

Flange 

(BoF)

Flange Face

Flange Root
Ancillary

Tread

Gage Face

Gage Corner

Mid-GageBall / Crown / Top of Rail (TOR)

Back-to-Back 

Wheel Spacing

Track Gage
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The Wheel / Rail Interface and Key Terminology 

(e.g. Low Rail Contact)

“Lightly”

Worn

“Heavily”

Worn
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The Wheel / Rail Interface and Key Terminology 

(e.g. High Rail Contact)

“Lightly”

Worn

“Heavily”

Worn
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The Contact Patch and Contact Pressures

• Question #1:  What is the length (area) of contact between a 
circle (cylinder) and a tangent line (plane)?

• Question #2:  Given Force and Area, how do we calculate 
pressure?

• Question #3:  If a circular body (~wheel) is brought into 
contact with a linear body (~rail) with a vertical force F and 
zero contact area, what is the resulting calculated pressure?
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Hertzian Contact
• Hertzian Contact (1882) describes the pressures, stresses and deformations that 

occur when curved elastic bodies are brought into contact.

• “Contact Patches” tend to be elliptical

• This yields parabolic contact pressures

• Contact theory was subsequently broadened to apply to rolling contact (Carter and 
Fromm) with non-elliptical contact and arbitrary creepage (Kalker; more on this 
later…)

Pavg

Po=3/2Pavg
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Creepage, Friction and Traction Forces

• Longitudinal Creepage

• The Traction-Creepage Curve

• Lateral Creepage

• Spin Creepage

• Friction at the Wheel-Rail Interface
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What does Longitudinal Creepage mean?...

• The frictional contact problem (Carter and Fromm, 1926) relates 
frictional forces to velocity differences between bodies in rolling 
contact.

• Longitudinal Creepage can be calculated as:

• In adhesion, 1% longitudinal creepage means that a wheel would 
turn 101 times while traveling a distance of 100 circumferences.

• In braking, -1% longitudinal creepage means that a wheel would 
turn 99 times while traveling a distance of 100 circumferences.

Rω-V

V
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“Free Rolling”

Wheel

Rail

Third Body Layer

Rω=V
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“Small” Positive (Longitudinal) 

Creepage

Wheel

Rail

Third Body Layer

Rω>V
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“Large” Positive (Longitudinal) 

Creepage

Wheel

Rail

Third Body Layer

Rω>V
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The Traction-Creepage Curve
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Lateral creepage

Imagine pushing a lawnmower across a steep slope…

OK, but when does this 

occur at the WRI?...
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Steering in “Steady State” Curving

(“Mild” Curves)

21

Angle of 

Attack (AoA)
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Steering in “Steady State” Curving

(“Sharp” Curves)

22

Angle of 

Attack (AoA)
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Steering in “Steady State” Curving

(“Very Sharp” Curves)

23

Angle of 

Attack (AoA)
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Spin Creepage

Think of spinning a coin on a tabletop….

OK, but when 

does this occur at 

the WRI?...
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25
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Rolling vs. Sliding Friction

They are not the same!

creep:

Rω-V

V

R (radius)

ω (rotational 

speed)
V

(forward velocity)

V

(sliding velocity)

N

(normal load)

N

(normal load)

f (friction force)

= f(creep) ≠ simply μN

f (friction force)

≈ simply μN

friction force shown as 

acting on wheel for 

positive creep

friction force shown as 

acting on block for 

positive sliding velocity

μ: coefficient of (sliding) friction
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Traction/Creepage Curves
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Third Body at Wheel/Rail Contact

• Third Body is made up of iron oxides, sands, wet paste, leaves etc….

• Third Body separates wheel and rail surface, accommodates velocity 

differences and determines wheel/rail friction.

• Wheel/Rail friction depends on the shear properties / composition of the 

third body layer.

body 3

Wheel (body 1)

Rail (body 2)

Interfacial Layers 
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Third Body Layer – Micron Scale

Y.Berthier, S. Decartes, M.Busquet et al. (2004). The Role and Effects of the third body in the 

wheel rail interaction. Fatigue Fract. Eng. Mater Struct. 27, 423-436

Rail Wheel
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Vehicle Steering and Curving Forces

• The wheel set
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Displaced wheel set 

λ = effective conicity

r0 = wheel radius of 

undisplaced wheelset

R = curve radius

L0 = half gauge
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Theoretical Equilibrium
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Effective Conicity
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Effective Conicity (Worn Wheels)
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Important Concept:

• Sometimes, forces give rise to creepage (e.g. traction, braking, 

steering)

• Other times, creepage gives rise to forces (e.g. curving)
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Effect of rolling radius difference on steering moment
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Tangent Running and Stability

• Lateral displacement 

→ ΔR mismatch
→ friction forces

→ steering moment

• Wheelset passes through 
central position with lateral 
velocity.

• At low speeds, oscillations 
decay.

• Above critical hunting speed, 
oscillations persist.

x

y
z

displacement

forward
velocity

longitudinal 
friction forces
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Flange Force

Curving Forces (101) 

Friction Forces 

(Lateral Creepage 

from AoA)

Anti-Steering Moment 

(Longitudinal Creepage from

mismatched rolling radii)

Track Spreading 

Forces

Direction of Travel

AoA
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Impacts of High Lateral Loads:

Rail Rollover / Track Spread Derailments
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Impacts of High Lateral Loads:

Plate Cutting, Gauge Widening
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Impacts of High Lateral Loads:

Wheel Climb Derailments
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Impacts of High Lateral Loads: Fastener Fatigue / Clip Breakage
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Returning to Question #1:  How can we estimate the 

lateral forces (and L/V ratios) that a vehicle is exerting 

on the track?
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Estimating AoA and Lateral Creepage in a “Sharp” Curve

Curve Radius, R

Wheelbase, 2L

Angle of Attack, α

V

• Leading Axle angle of attack:

α ~ arcsin(2L/R) ~ 2L/R = 0.0061 Rad (6.1 mRad)

• Lateral Creepage at TOR contact:

Vlat/V ~ 2L/R ~ α = 0.61%

α

• Example:

6o curve (R = 955’)

70” wheelbase (2L = 5.83’)

μTOR = 0.5 (dry)
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Estimating Low Rail L/V and Lateral Force

L/V

Creep

μ
At high creep L/V ~ μ

At low creep L/V ~ const*creep

~1(%)

Angle of 

Attack (AoA)

• At 0.61% creep:

L/V = ______ μ
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How does this compare with simulation results?
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Questions & Discussion
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Overview: Part II

• Curving Forces (Continued)

• Damage Mechanisms

– Wheel and Rail Wear

– Shakedown and Rolling Contact Fatigue (RCF)

• Curving Noise

• Corrugations

48



Curving Forces (201)

• Remember this?

How often to we 

see a single 

(isolated) wheel 

set in operation?

Hopefully not very 

often!
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Factors Affecting Curving Forces
• Creepage and friction at the gage face / wheel flange 

interface (e.g. GF Lubrication -> increased L/V)

• Speed (relative to superelevation) 

and centrifugal forces

• Coupler Forces

• Buff & Drag Forces

• Vehicle / Track Dynamics:

– Hunting

– Bounce

– Pitch

– Roll
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An example…

• Why are the lateral forces measured a few 

cribs apart so different?

51



Mystery solved…
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Rail and Wheel Wear
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Rail and Wheel Wear

c proportional to COF

N

l

H

Nl
cV =

• “Archard” Wear Law:

– V = volume of wear
– N = normal load
– l = sliding distance (i.e. creepage)
– H = hardness
– c = wear coefficient

• Wear Types:
– Adhesion
– Surface Fatigue
– Abrasion
– Corrosion
– Rolling Contact Fatigue
– Plastic Flow
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Wear regimes

T = Tractive force

ү = Slip
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Shakedown and Rolling Contact Fatigue 

(RCF)
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Recall: Hertzian Contact

• “Contact Patches” tend to be elliptical

• This yields parabolic contact pressures

Pavg

Po=3/2Pavg

57



The Contact Patch and Contact Pressures
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The Contact Patch and Contact Pressures

Low Rail Contact 

Area, mm2
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Example calculation: Average and Peak Pressure

• Let’s assume a circular contact patch, with a radius of 0.28” (7 mm)

• The contact area is then:   0.24 in2 (154 mm2)

• Assuming a HAL vehicle weight (gross) of 286,000 lbs, we have a nominal 

wheel load of 35,750 lbs, i.e. 35.75 kips (159 kN)

• The resulting average contact pressure (Pavg) is then:  150 ksi (1,033 MPa)

• This gives us a peak contact pressure (Po) of:  225 ksi (1,550 MPa)

• What is the shear yield strength of rail steel?*

• What’s going on?

*Magel, E., Sroba, P., Sawley, K. 

and Kalousek, J. (2004) Control of 

Rolling Contact Fatigue of Rails, 

Proceedings of the 2004 AREMA 

Annual Conference, Nashville, TN, 

September 19-22, 2004

Steel Hardness

(Brinnell)

K

ksi MPa

“Standard” 260-280 65-70 448-483

“Intermediate” 320-340 80-85 552-587

“Premium” 340-380 85-95 587-656

“HE Premium” 380-400 95-100 656-691
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Tensile Testing (1-D loading)
Spherical Contact with Elastic 

Half-Space (3-D loading)

Cylindrical Contact with Elastic 

Half-Space (2-D loading)
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RCF Development:  

Contact Pressures, Tractions and Stresses

• Cylindrical contact pressure / stress 

distribution with no tangential 

traction

• Cylindrical pressure / stress 

distribution with tangential traction

τzx

σz

σx
τzx

σz

σx

Traction coefficient, f  = 0

Traction coefficient, f  = 0.2
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RCF Development: Shakedown

Reduced Stress

(e.g. wheel/rail profiles)

Increased Mat’l Strength

Reduced Traction Coefficient

(e.g. reduced friction)
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Hydropressurization: effect of liquids on crack growth
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Wear and RCF 

wheel/rail rig test results

2,042,00

1,00

1,77

0,00
0,50
1,00
1,50
2,00
2,50

crack depth [mm] crack distance [mm]

di
st

an
ce

 [m
m

]

R260
R350HT

new

dry
FM 100k

FM 400k

new

dry
FM 100k

FM 400k

R260 R350HT

Dry tests crack results

67



Recalling Question #2:  How can we determine if there 

is a risk of rolling contact fatigue (RCF) developing 

under a given set of vehicle/track conditions?
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• Consider a heavy haul railway site, where heavy axle load vehicles 

(286,000 lb gross weight) with a typical wheelbase of 70” traverse a 

3 degree curve at balance speed. 

• Wheel / rail profiles and vehicle steering behavior are such that the curve 

can be considered “mild”

• The contact area at each wheel tread / low rail interface is approximately 

circular, with a typical radius of 7mm.

• The rail steel can be assumed to have a shear yield strength of k=70 ksi.

• The rail surface is dry, with a nominal COF of μ = 0.6

• How would you assess the risk of low rail RCF formation and growth under 

these conditions?
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Estimating lateral creepage, traction ratio & 

contact pressure:

• In “mild” curving, leading axle angle of attack:

α ~ arcsin(L/R) ~ L/R = 0.0030 Rad (3.0 mRad)

• Lateral Creepage at low rail TOR contact:

Vlat/V ~ 2L/R ~ α = 0.3%
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Estimating the traction ratio (L/V)

• At 0.3% creep:

T/N ~ 0.6 μ

• With μ = 0.6

Traction Ratio (T/N) ~ 0.36

*Note, we have neglected longitudinal and spin creep…
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Where are we on the shakedown map?
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• From the previous 

slide, T/N ~0.36

• We previously 

calculated 

Po = 225 ksi

• With K = 70ksi,

Po/K = 3.21
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Curving Noise
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Spectral range for different noise types

Noise type Frequency range, Hz

Rolling 30 -2500

Rumble (including corrugations) 200 - 1000

Flat spots 50 -250 (speed dependant)

Ground Borne Vibrations 30 - 200

Top of rail squeal 1000 - 5000

Flanging noise 5000 – 10000
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Top of rail wheel squeal noise
• High pitched, tonal squeal (predominantly 1000 – 5000 Hz)
• Prevalent noise mechanism in “problem” curves, usually < 300m 

radius
• Related to both negative friction characteristics of Third Body at 

tread / top of rail interface and absolute friction level
� Stick-slip oscillations

Flanging noise
• Typically a “buzzing” OR “hissing” sound, characterized by 

broadband high frequency components (>5000 Hz)
• Affected by: 

• Lateral forces: related to friction on the top of the low rail
• Flanging forces: related to friction on top of low and high rails 
• Friction at the flange / gauge face interface
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Absolute Friction Levels and Positive/Negative Friction 
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Sound spectral distribution for different wheel / rail systems
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Effect of friction characteristics 

on spectral sound distribution: Trams
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Effect of friction characteristics

on spectral sound distribution: Trams
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Corrugations (Short Pitch)
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Perturbation
Damage

Mechanism

Wavelength
Fixing

Mechanism

Corrugation formation: common threads

+
Corrugations
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Pinned-Pinned corrugation (“roaring rail”)

• At the pinned-pinned resonance, rail vibrates as it 

were a beam almost pinned at the ties / sleepers

• Highest frequency corrugation type: 400 – 1200 Hz

• Modulation at tie / sleeper spacing – support 

appears dynamically stiff so vertical dynamic loads 

appear greater
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Rutting

•Typically appears on low rail

•Frequency corresponds to second 

torsional resonance of driven wheelsets

•Very common on metros

•Roll-slip oscillations are central to 

mechanism
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Recalling Question #3:  How is the noise 

captured in these two sound files 

generated at the wheel/rail interface?

• File #1:

• File #2:
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Summary

• Returning to our objectives, we have reviewed:

– The Wheel / Rail Interface and Key Terminology

– The Contact Patch and Contact Pressures

– Creepage, Friction and Traction Forces

– Wheelset Geometry and Effective Conicity

– Vehicle Steering and Curving Forces

– Rail and Wheel Wear

– Shakedown and Rolling Contact Fatigue (RCF)

– Curving Noise

– Corrugations

• The intent has been to establish a framework to understand, articulate, 
quantify and identify key phenomena that affect the practical operation, 
economics and safety of heavy haul and passenger rail systems.
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Questions & Discussion
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